Bott–Samelson resolution

In algebraic geometry, the Bott–Samelson resolution of a Schubert variety is a resolution of singularities. It was introduced by Bott & Samelson (1958) in the context of compact Lie groups.[1] The algebraic formulation is independently due to Hansen (1973) and Demazure (1974).

Definition

Let G be a connected reductive complex algebraic group, B a Borel subgroup and T a maximal torus contained in B.

Let w W = N G ( T ) / T . {\displaystyle w\in W=N_{G}(T)/T.} Any such w can be written as a product of reflections by simple roots. Fix minimal such an expression:

w _ = ( s i 1 , s i 2 , , s i ) {\displaystyle {\underline {w}}=(s_{i_{1}},s_{i_{2}},\ldots ,s_{i_{\ell }})}

so that w = s i 1 s i 2 s i {\displaystyle w=s_{i_{1}}s_{i_{2}}\cdots s_{i_{\ell }}} . ( is the length of w.) Let P i j G {\displaystyle P_{i_{j}}\subset G} be the subgroup generated by B and a representative of s i j {\displaystyle s_{i_{j}}} . Let Z w _ {\displaystyle Z_{\underline {w}}} be the quotient:

Z w _ = P i 1 × × P i / B {\displaystyle Z_{\underline {w}}=P_{i_{1}}\times \cdots \times P_{i_{\ell }}/B^{\ell }}

with respect to the action of B {\displaystyle B^{\ell }} by

( b 1 , , b ) ( p 1 , , p ) = ( p 1 b 1 1 , b 1 p 2 b 2 1 , , b 1 p b 1 ) . {\displaystyle (b_{1},\ldots ,b_{\ell })\cdot (p_{1},\ldots ,p_{\ell })=(p_{1}b_{1}^{-1},b_{1}p_{2}b_{2}^{-1},\ldots ,b_{\ell -1}p_{\ell }b_{\ell }^{-1}).}

It is a smooth projective variety. Writing X w = B w B ¯ / B = ( P i 1 P i ) / B {\displaystyle X_{w}={\overline {BwB}}/B=(P_{i_{1}}\cdots P_{i_{\ell }})/B} for the Schubert variety for w, the multiplication map

π : Z w _ X w {\displaystyle \pi :Z_{\underline {w}}\to X_{w}}

is a resolution of singularities called the Bott–Samelson resolution. π {\displaystyle \pi } has the property: π O Z w _ = O X w {\displaystyle \pi _{*}{\mathcal {O}}_{Z_{\underline {w}}}={\mathcal {O}}_{X_{w}}} and R i π O Z w _ = 0 , i 1. {\displaystyle R^{i}\pi _{*}{\mathcal {O}}_{Z_{\underline {w}}}=0,\,i\geq 1.} In other words, X w {\displaystyle X_{w}} has rational singularities.[2]

There are also some other constructions; see, for example, Vakil (2006).

Notes

References

  • Bott, Raoul; Samelson, Hans (1958), "Applications of the theory of Morse to symmetric spaces", American Journal of Mathematics, 80: 964–1029, doi:10.2307/2372843, MR 0105694.
  • Brion, Michel (2005), "Lectures on the geometry of flag varieties", Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, pp. 33–85, arXiv:math/0410240, doi:10.1007/3-7643-7342-3_2, MR 2143072.
  • Demazure, Michel (1974), "Désingularisation des variétés de Schubert généralisées", Annales Scientifiques de l'École Normale Supérieure (in French), 7: 53–88, MR 0354697.
  • Gorodski, Claudio; Thorbergsson, Gudlaugur (2002), "Cycles of Bott-Samelson type for taut representations", Annals of Global Analysis and Geometry, 21 (3): 287–302, arXiv:math/0101209, doi:10.1023/A:1014911422026, MR 1896478.
  • Hansen, H. C. (1973), "On cycles in flag manifolds", Mathematica Scandinavica, 33: 269–274 (1974), doi:10.7146/math.scand.a-11489, MR 0376703.
  • Vakil, Ravi (2006), "A geometric Littlewood-Richardson rule", Annals of Mathematics, Second Series, 164 (2): 371–421, arXiv:math.AG/0302294, doi:10.4007/annals.2006.164.371, MR 2247964.