Carathéodory function

In mathematical analysis, a Carathéodory function (or Carathéodory integrand) is a multivariable function that allows us to solve the following problem effectively: A composition of two Lebesgue-measurable functions does not have to be Lebesgue-measurable as well. Nevertheless, a composition of a measurable function with a continuous function is indeed Lebesgue-measurable, but in many situations, continuity is a too restrictive assumption. Carathéodory functions are more general than continuous functions, but still allow a composition with Lebesgue-measurable function to be measurable. Carathéodory functions play a significant role in calculus of variation, and it is named after the Greek mathematician Constantin Carathéodory.

Definition

W : Ω × R N R { + } {\displaystyle W:\Omega \times \mathbb {R} ^{N}\rightarrow \mathbb {R} \cup \left\{+\infty \right\}} , for Ω R d {\displaystyle \Omega \subseteq \mathbb {R} ^{d}} endowed with the Lebesgue measure, is a Carathéodory function if:

1. The mapping x W ( x , ξ ) {\displaystyle x\mapsto W\left(x,\xi \right)} is Lebesgue-measurable for every ξ R N {\displaystyle \xi \in \mathbb {R} ^{N}} .

2. the mapping ξ W ( x , ξ ) {\displaystyle \xi \mapsto W\left(x,\xi \right)} is continuous for almost every x Ω {\displaystyle x\in \Omega } .

The main merit of Carathéodory function is the following: If W : Ω × R N R {\displaystyle W:\Omega \times \mathbb {R} ^{N}\rightarrow \mathbb {R} } is a Carathéodory function and u : Ω R N {\displaystyle u:\Omega \rightarrow \mathbb {R} ^{N}} is Lebesgue-measurable, then the composition x W ( x , u ( x ) ) {\displaystyle x\mapsto W\left(x,u\left(x\right)\right)} is Lebesgue-measurable.[1]

Example

Many problems in the calculus of variation are formulated in the following way: find the minimizer of the functional F : W 1 , p ( Ω ; R m ) R { + } {\displaystyle {\mathcal {F}}:W^{1,p}\left(\Omega ;\mathbb {R} ^{m}\right)\rightarrow \mathbb {R} \cup \left\{+\infty \right\}} where W 1 , p ( Ω ; R m ) {\displaystyle W^{1,p}\left(\Omega ;\mathbb {R} ^{m}\right)} is the Sobolev space, the space consisting of all function u : Ω R m {\displaystyle u:\Omega \rightarrow \mathbb {R} ^{m}} that are weakly differentiable and that the function itself and all its first order derivative are in L p ( Ω ; R m ) {\displaystyle L^{p}\left(\Omega ;\mathbb {R} ^{m}\right)} ; and where F [ u ] = Ω W ( x , u ( x ) , u ( x ) ) d x {\displaystyle {\mathcal {F}}\left[u\right]=\int _{\Omega }W\left(x,u\left(x\right),\nabla u\left(x\right)\right)dx} for some W : Ω × R m × R d × m R {\displaystyle W:\Omega \times \mathbb {R} ^{m}\times \mathbb {R} ^{d\times m}\rightarrow \mathbb {R} } , a Carathéodory function. The fact that W {\displaystyle W} is a Carathéodory function ensures us that F [ u ] = Ω W ( x , u ( x ) , u ( x ) ) d x {\displaystyle {\mathcal {F}}\left[u\right]=\int _{\Omega }W\left(x,u\left(x\right),\nabla u\left(x\right)\right)dx} is well-defined.

p-growth

If W : Ω × R m × R d × m R {\displaystyle W:\Omega \times \mathbb {R} ^{m}\times \mathbb {R} ^{d\times m}\rightarrow \mathbb {R} } is Carathéodory and satisfies | W ( x , v , A ) | C ( 1 + | v | p + | A | p ) {\displaystyle \left|W\left(x,v,A\right)\right|\leq C\left(1+\left|v\right|^{p}+\left|A\right|^{p}\right)} for some C > 0 {\displaystyle C>0} (this condition is called "p-growth"), then F : W 1 , p ( Ω ; R m ) R {\displaystyle {\mathcal {F}}:W^{1,p}\left(\Omega ;\mathbb {R} ^{m}\right)\rightarrow \mathbb {R} } where F [ u ] = Ω W ( x , u ( x ) , u ( x ) ) d x {\displaystyle {\mathcal {F}}\left[u\right]=\int _{\Omega }W\left(x,u\left(x\right),\nabla u\left(x\right)\right)dx} is finite, and continuous in the strong topology (i.e. in the norm) of W 1 , p ( Ω ; R m ) {\displaystyle W^{1,p}\left(\Omega ;\mathbb {R} ^{m}\right)} .

References

  1. ^ Rindler, Filip (2018). Calculus of Variation. Springer Cham. p. 26-27.