Day convolution

Convolution

In mathematics, specifically in category theory, Day convolution is an operation on functors that can be seen as a categorified version of function convolution. It was first introduced by Brian Day in 1970 [1] in the general context of enriched functor categories. Day convolution acts as a tensor product for a monoidal category structure on the category of functors [ C , V ] {\displaystyle [\mathbf {C} ,V]} over some monoidal category V {\displaystyle V} .

Definition

Let ( C , c ) {\displaystyle (\mathbf {C} ,\otimes _{c})} be a monoidal category enriched over a symmetric monoidal closed category ( V , ) {\displaystyle (V,\otimes )} . Given two functors F , G : C V {\displaystyle F,G\colon \mathbf {C} \to V} , we define their Day convolution as the following coend.[2]

F d G = x , y C C ( x c y , ) F x G y {\displaystyle F\otimes _{d}G=\int ^{x,y\in \mathbf {C} }\mathbf {C} (x\otimes _{c}y,-)\otimes Fx\otimes Gy}

If c {\displaystyle \otimes _{c}} is symmetric, then d {\displaystyle \otimes _{d}} is also symmetric. We can show this defines an associative monoidal product.

( F d G ) d H c 1 , c 2 ( F d G ) c 1 H c 2 C ( c 1 c c 2 , ) c 1 , c 2 ( c 3 , c 4 F c 3 G c 4 C ( c 3 c c 4 , c 1 ) ) H c 2 C ( c 1 c c 2 , ) c 1 , c 2 , c 3 , c 4 F c 3 G c 4 H c 2 C ( c 3 c c 4 , c 1 ) C ( c 1 c c 2 , ) c 1 , c 2 , c 3 , c 4 F c 3 G c 4 H c 2 C ( c 3 c c 4 c c 2 , ) c 1 , c 2 , c 3 , c 4 F c 3 G c 4 H c 2 C ( c 2 c c 4 , c 1 ) C ( c 3 c c 1 , ) c 1 , c 3 F c 3 ( G d H ) c 1 C ( c 3 c c 1 , ) F d ( G d H ) {\displaystyle {\begin{aligned}&(F\otimes _{d}G)\otimes _{d}H\\[5pt]\cong {}&\int ^{c_{1},c_{2}}(F\otimes _{d}G)c_{1}\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2}}\left(\int ^{c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4},c_{1})\right)\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4},c_{1})\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{2}\otimes _{c}c_{4},c_{1})\otimes \mathbf {C} (c_{3}\otimes _{c}c_{1},-)\\[5pt]\cong {}&\int ^{c_{1},c_{3}}Fc_{3}\otimes (G\otimes _{d}H)c_{1}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{1},-)\\[5pt]\cong {}&F\otimes _{d}(G\otimes _{d}H)\end{aligned}}}

References

  1. ^ Day, Brian (1970). "On closed categories of functors". Reports of the Midwest Category Seminar IV, Lecture Notes in Mathematics. 139: 1–38.
  2. ^ Loregian, Fosco (2021). (Co)end Calculus. p. 51. arXiv:1501.02503. doi:10.1017/9781108778657. ISBN 9781108778657. S2CID 237839003.
  • Day convolution at the nLab