Moduli of abelian varieties

Abelian varieties are a natural generalization of elliptic curves, including algebraic tori in higher dimensions. Just as elliptic curves have a natural moduli space M 1 , 1 {\displaystyle {\mathcal {M}}_{1,1}} over characteristic 0 constructed as a quotient of the upper-half plane by the action of S L 2 ( Z ) {\displaystyle SL_{2}(\mathbb {Z} )} ,[1] there is an analogous construction for abelian varieties A g {\displaystyle {\mathcal {A}}_{g}} using the Siegel upper half-space and the symplectic group Sp 2 g ( Z ) {\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} .[2]

Constructions over characteristic 0

Principally polarized Abelian varieties

Recall that the Siegel upper-half plane is given by[3]

H g = { Ω Mat g , g ( C ) : Ω T = Ω , Im ( Ω ) > 0 } Sym g ( C ) {\displaystyle H_{g}=\{\Omega \in \operatorname {Mat} _{g,g}(\mathbb {C} ):\Omega ^{T}=\Omega ,\operatorname {Im} (\Omega )>0\}\subseteq \operatorname {Sym} _{g}(\mathbb {C} )}

which is an open subset in the g × g {\displaystyle g\times g} symmetric matrices (since Im ( Ω ) > 0 {\displaystyle \operatorname {Im} (\Omega )>0} is an open subset of R {\displaystyle \mathbb {R} } , and Im {\displaystyle \operatorname {Im} } is continuous). Notice if g = 1 {\displaystyle g=1} this gives 1 × 1 {\displaystyle 1\times 1} matrices with positive imaginary part, hence this set is a generalization of the upper half plane. Then any point Ω H g {\displaystyle \Omega \in H_{g}} gives a complex torus

X Ω = C g / ( Ω Z g + Z g ) {\displaystyle X_{\Omega }=\mathbb {C} ^{g}/(\Omega \mathbb {Z} ^{g}+\mathbb {Z} ^{g})}

with a principal polarization H Ω {\displaystyle H_{\Omega }} from the matrix Ω 1 {\displaystyle \Omega ^{-1}} [2]page 34. It turns out all principally polarized Abelian varieties arise this way, giving H g {\displaystyle H_{g}} the structure of a parameter space for all principally polarized Abelian varieties. But, there exists an equivalence where

X Ω X Ω Ω = M Ω {\displaystyle X_{\Omega }\cong X_{\Omega '}\iff \Omega =M\Omega '} for M Sp 2 g ( Z ) {\displaystyle M\in \operatorname {Sp} _{2g}(\mathbb {Z} )}

hence the moduli space of principally polarized abelian varieties is constructed from the stack quotient

A g = [ Sp 2 g ( Z ) H g ] {\displaystyle {\mathcal {A}}_{g}=[\operatorname {Sp} _{2g}(\mathbb {Z} )\backslash H_{g}]}

which gives a Deligne-Mumford stack over Spec ( C ) {\displaystyle \operatorname {Spec} (\mathbb {C} )} . If this is instead given by a GIT quotient, then it gives the coarse moduli space A g {\displaystyle A_{g}} .

Principally polarized Abelian varieties with level n-structure

In many cases, it is easier to work with the moduli space of principally polarized Abelian varieties with level n-structure because it creates a rigidification of the moduli problem which gives a moduli functor instead of a moduli stack.[4][5] This means the functor is representable by an algebraic manifold, such as a variety or scheme, instead of a stack. A level n-structure is given by a fixed basis of

H 1 ( X Ω , Z / n ) 1 n L / L n -torsion of  X Ω {\displaystyle H_{1}(X_{\Omega },\mathbb {Z} /n)\cong {\frac {1}{n}}\cdot L/L\cong n{\text{-torsion of }}X_{\Omega }}

where L {\displaystyle L} is the lattice Ω Z g + Z g C 2 g {\displaystyle \Omega \mathbb {Z} ^{g}+\mathbb {Z} ^{g}\subset \mathbb {C} ^{2g}} . Fixing such a basis removes the automorphisms of an abelian variety at a point in the moduli space, hence there exists a bona-fide algebraic manifold without a stabilizer structure. Denote

Γ ( n ) = ker [ Sp 2 g ( Z ) Sp 2 g ( Z ) / n ] {\displaystyle \Gamma (n)=\ker[\operatorname {Sp} _{2g}(\mathbb {Z} )\to \operatorname {Sp} _{2g}(\mathbb {Z} )/n]}

and define

A g , n = Γ ( n ) H g {\displaystyle A_{g,n}=\Gamma (n)\backslash H_{g}}

as a quotient variety.

References

  1. ^ Hain, Richard (2014-03-25). "Lectures on Moduli Spaces of Elliptic Curves". arXiv:0812.1803 [math.AG].
  2. ^ a b Arapura, Donu. "Abelian Varieties and Moduli" (PDF).
  3. ^ Birkenhake, Christina; Lange, Herbert (2004). Complex Abelian Varieties. Grundlehren der mathematischen Wissenschaften (2 ed.). Berlin Heidelberg: Springer-Verlag. pp. 210–241. ISBN 978-3-540-20488-6.
  4. ^ Mumford, David (1983), Artin, Michael; Tate, John (eds.), "Towards an Enumerative Geometry of the Moduli Space of Curves", Arithmetic and Geometry: Papers Dedicated to I.R. Shafarevich on the Occasion of His Sixtieth Birthday. Volume II: Geometry, Progress in Mathematics, Birkhäuser, pp. 271–328, doi:10.1007/978-1-4757-9286-7_12, ISBN 978-1-4757-9286-7
  5. ^ Level n-structures are used to construct an intersection theory of Deligne–Mumford stacks

See also