Parabolic Hausdorff dimension

A certain fractal dimension

In fractal geometry, the parabolic Hausdorff dimension is a restricted version of the genuine Hausdorff dimension.[1] Only parabolic cylinders, i. e. rectangles with a distinct non-linear scaling between time and space are permitted as covering sets. It is usefull to determine the Hausdorff dimension of self-similar stochastic processes, such as the geometric Brownian motion[2] or stable Lévy processes[3] plus Borel measurable drift function f {\displaystyle f} .

Definitions

We define the α {\displaystyle \alpha } -parabolic β {\displaystyle \beta } -Hausdorff outer measure for any set A R d + 1 {\displaystyle A\subseteq \mathbb {R} ^{d+1}} as

P α H β ( A ) := lim δ 0 inf { k = 1 | P k | β : A k = 1 P k , P k P α , | P k | δ } . {\displaystyle {\mathcal {P}}^{\alpha }-{\mathcal {H}}^{\beta }(A):=\lim _{\delta \downarrow 0}\inf \left\{\sum _{k=1}^{\infty }\left|P_{k}\right|^{\beta }:A\subseteq \bigcup _{k=1}^{\infty }P_{k},P_{k}\in {\mathcal {P}}^{\alpha },\left|P_{k}\right|\leq \delta \right\}.}

where the α {\displaystyle \alpha } -parabolic cylinders ( P k ) k N {\displaystyle \left(P_{k}\right)_{k\in \mathbb {N} }} are contained in

P α := { [ t , t + c ] × i = 1 d [ x i , x i + c 1 / α ] ; t , x i R , c ( 0 , 1 ] } . {\displaystyle {\mathcal {P}}^{\alpha }:=\left\{[t,t+c]\times \prod _{i=1}^{d}\left[x_{i},x_{i}+c^{1/\alpha }\right];t,x_{i}\in \mathbb {R} ,c\in (0,1]\right\}.}

We define the α {\displaystyle \alpha } -parabolic Hausdorff dimension of A {\displaystyle A} as

P α dim A := inf { β 0 : P α H β ( A ) = 0 } . {\displaystyle {\mathcal {P}}^{\alpha }-\dim A:=\inf \left\{\beta \geq 0:{\mathcal {P}}^{\alpha }-{\mathcal {H}}^{\beta }(A)=0\right\}.}

The case α = 1 {\displaystyle \alpha =1} equals the genuine Hausdorff dimension dim {\displaystyle \dim } .

Application

Let φ α := P α dim G T ( f ) {\displaystyle \varphi _{\alpha }:={\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}(f)} . We can calculate the Hausdorff dimension of the fractional Brownian motion B H {\displaystyle B^{H}} of Hurst index 1 / α = H ( 0 , 1 ] {\displaystyle 1/\alpha =H\in (0,1]} plus some measurable drift function f {\displaystyle f} . We get

dim G T ( B H + f ) = φ α 1 α φ α + ( 1 1 α ) d {\displaystyle \dim {\mathcal {G}}_{T}\left(B^{H}+f\right)=\varphi _{\alpha }\wedge {\frac {1}{\alpha }}\cdot \varphi _{\alpha }+\left(1-{\frac {1}{\alpha }}\right)\cdot d}

and

dim R T ( B H + f ) = φ α d . {\displaystyle \dim {\mathcal {R}}_{T}\left(B^{H}+f\right)=\varphi _{\alpha }\wedge d.}

For an isotropic α {\displaystyle \alpha } -stable Lévy process X {\displaystyle X} for α ( 0 , 2 ] {\displaystyle \alpha \in (0,2]} plus some measurable drift function f {\displaystyle f} we get

dim G T ( X + f ) = { φ 1 , α ( 0 , 1 ] , φ α 1 α φ α + ( 1 1 α ) d , α [ 1 , 2 ] {\displaystyle \dim {\mathcal {G}}_{T}(X+f)={\begin{cases}\varphi _{1},&\alpha \in (0,1],\\\varphi _{\alpha }\wedge {\frac {1}{\alpha }}\cdot \varphi _{\alpha }+\left(1-{\frac {1}{\alpha }}\right)\cdot d,&\alpha \in [1,2]\end{cases}}}

and

dim R T ( X + f ) = { α φ α d , α ( 0 , 1 ] , φ α d , α [ 1 , 2 ] . {\displaystyle \dim {\mathcal {R}}_{T}\left(X+f\right)={\begin{cases}\alpha \cdot \varphi _{\alpha }\wedge d,&\alpha \in (0,1],\\\varphi _{\alpha }\wedge d,&\alpha \in [1,2].\end{cases}}}

Inequalities and identities

For ϕ α := P α dim A {\displaystyle \phi _{\alpha }:={\mathcal {P}}^{\alpha }-\dim A} one has

dim A { ϕ α α ϕ α + 1 α , α ( 0 , 1 ] , ϕ α 1 α α + ( 1 1 α ) d , α [ 1 , ) {\displaystyle \dim A\leq {\begin{cases}\phi _{\alpha }\wedge \alpha \cdot \phi _{\alpha }+1-\alpha ,&\alpha \in (0,1],\\\phi _{\alpha }\wedge {\frac {1}{\alpha }}\cdot \alpha +\left(1-{\frac {1}{\alpha }}\right)\cdot d,&\alpha \in [1,\infty )\end{cases}}}

and

dim A { α ϕ α ϕ α + ( 1 1 α ) d , α ( 0 , 1 ] , ϕ α + 1 α , α [ 1 , ) . {\displaystyle \dim A\geq {\begin{cases}\alpha \cdot \phi _{\alpha }\vee \phi _{\alpha }+\left(1-{\frac {1}{\alpha }}\right)\cdot d,&\alpha \in (0,1],\\\phi _{\alpha }+1-\alpha ,&\alpha \in [1,\infty ).\end{cases}}}

Further, for the fractional Brownian motion B H {\displaystyle B^{H}} of Hurst index 1 / α = H ( 0 , 1 ] {\displaystyle 1/\alpha =H\in (0,1]} one has

P α dim G T ( B H ) = α dim T {\displaystyle {\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}\left(B^{H}\right)=\alpha \cdot \dim T}

and for an isotropic α {\displaystyle \alpha } -stable Lévy process X {\displaystyle X} for α ( 0 , 2 ] {\displaystyle \alpha \in (0,2]} one has

P α dim G T ( X ) = ( α 1 ) dim T {\displaystyle {\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}\left(X\right)=(\alpha \vee 1)\cdot \dim T}

and

dim R T ( X ) = α dim T d . {\displaystyle \dim {\mathcal {R}}_{T}(X)=\alpha \cdot \dim T\wedge d.}

For constant functions f C {\displaystyle f_{C}} we get

P α dim G T ( f C ) = ( α 1 ) dim T . {\displaystyle {\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}\left(f_{C}\right)=(\alpha \vee 1)\cdot \dim T.}

If f C β ( T , R d ) {\displaystyle f\in C^{\beta }(T,\mathbb {R} ^{d})} , i. e. f {\displaystyle f} is β {\displaystyle \beta } -Hölder continuous, for φ α = P α dim G T ( f ) {\displaystyle \varphi _{\alpha }={\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}(f)} the estimates

φ α { dim T + ( 1 α β ) d dim T α β d + 1 , α ( 0 , 1 ] , α dim T + ( 1 α β ) d dim T β d + 1 , α [ 1 , 1 β ] , α dim T + 1 β ( dim T 1 ) + α d + 1 , α [ 1 β , ) ] {\displaystyle \varphi _{\alpha }\leq {\begin{cases}\dim T+\left({\frac {1}{\alpha }}-\beta \right)\cdot d\wedge {\frac {\dim T}{\alpha \cdot \beta }}\wedge d+1,&\alpha \in (0,1],\\\alpha \cdot \dim T+(1-\alpha \cdot \beta )\cdot d\wedge {\frac {\dim T}{\beta }}\wedge d+1,&\alpha \in \left[1,{\frac {1}{\beta }}\right],\\\alpha \cdot \dim T+{\frac {1}{\beta }}(\dim T-1)+\alpha \wedge d+1,&\alpha \in \left[{\frac {1}{\beta }},\infty )\right]\end{cases}}}

hold.

Finally, for the Brownian motion B {\displaystyle B} and f C β ( T , R d ) {\displaystyle f\in C^{\beta }\left(T,\mathbb {R} ^{d}\right)} we get

dim G T ( B + f ) { d + 1 2 , β dim T d 1 2 d , dim T + ( 1 β ) d , dim T d 1 2 d β dim T d 1 2 , dim T β , dim T d β 1 2 , 2 dim T dim T + d 2 ,  else {\displaystyle \dim {\mathcal {G}}_{T}(B+f)\leq {\begin{cases}d+{\frac {1}{2}},&\beta \leq {\frac {\dim T}{d}}-{\frac {1}{2d}},\\\dim T+(1-\beta )\cdot d,&{\frac {\dim T}{d}}-{\frac {1}{2d}}\leq \beta \leq {\frac {\dim T}{d}}\wedge {\frac {1}{2}},\\{\frac {\dim T}{\beta }},&{\frac {\dim T}{d}}\leq \beta \leq {\frac {1}{2}},\\2\cdot \dim T\wedge \dim T+{\frac {d}{2}},&{\text{ else}}\end{cases}}}

and

dim R T ( B + f ) { dim T β , dim T d β 1 2 , 2 dim T d , dim T d 1 2 β , d ,  else . {\displaystyle \dim {\mathcal {R}}_{T}(B+f)\leq {\begin{cases}{\frac {\dim T}{\beta }},&{\frac {\dim T}{d}}\leq \beta \leq {\frac {1}{2}},\\2\cdot \dim T\wedge d,&{\frac {\dim T}{d}}\leq {\frac {1}{2}}\leq \beta ,\\d,&{\text{ else}}.\end{cases}}}

References

  1. ^ Taylor & Watson, 1985.
  2. ^ Peres & Sousi, 2016.
  3. ^ Kern & Pleschberger, 2024.

Sources

  • Kern, Peter; Pleschberger, Leonard (2024). "Parabolic Fractal Geometry of Stable Lévy Processes with Drift". arXiv:2312.13800 [math.PR].{{cite arXiv}}: CS1 maint: multiple names: authors list (link)
  • Peres, Yuval; Sousi, Perla (2016). "Dimension of fractional Brownian motion with variable drift". Probab. Theory Relat. Fields. 165 (3–4): 771–794. arXiv:1310.7002. doi:10.1007/s00440-015-0645-5.
  • Taylor, S.; Watson, N. (1985). "A Hausdorff measure classification of polar sets for the heat equation", Math. Proc. Camb. Phil. Soc. 97: 325–344.