Schlömilch's series

Fourier series type expansion

Schlömilch's series is a Fourier series type expansion of twice continuously differentiable function in the interval ( 0 , π ) {\displaystyle (0,\pi )} in terms of the Bessel function of the first kind, named after the German mathematician Oskar Schlömilch, who derived the series in 1857.[1][2][3][4][5] The real-valued function f ( x ) {\displaystyle f(x)} has the following expansion:

f ( x ) = a 0 + n = 1 a n J 0 ( n x ) , {\displaystyle f(x)=a_{0}+\sum _{n=1}^{\infty }a_{n}J_{0}(nx),}

where

a 0 = f ( 0 ) + 1 π 0 π 0 π / 2 u f ( u sin θ )   d θ   d u , a n = 2 π 0 π 0 π / 2 u cos n u   f ( u sin θ )   d θ   d u . {\displaystyle {\begin{aligned}a_{0}&=f(0)+{\frac {1}{\pi }}\int _{0}^{\pi }\int _{0}^{\pi /2}uf'(u\sin \theta )\ d\theta \ du,\\a_{n}&={\frac {2}{\pi }}\int _{0}^{\pi }\int _{0}^{\pi /2}u\cos nu\ f'(u\sin \theta )\ d\theta \ du.\end{aligned}}}

Examples

Some examples of Schlömilch's series are the following:

  • Null functions in the interval ( 0 , π ) {\displaystyle (0,\pi )} can be expressed by Schlömilch's Series, 0 = 1 2 + n = 1 ( 1 ) n J 0 ( n x ) {\displaystyle 0={\frac {1}{2}}+\sum _{n=1}^{\infty }(-1)^{n}J_{0}(nx)} , which cannot be obtained by Fourier Series. This is particularly interesting because the null function is represented by a series expansion in which not all the coefficients are zero. The series converges only when 0 < x < π {\displaystyle 0<x<\pi } ; the series oscillates at x = 0 {\displaystyle x=0} and diverges at x = π {\displaystyle x=\pi } . This theorem is generalized so that 0 = 1 2 Γ ( ν + 1 ) + n = 1 ( 1 ) n J 0 ( n x ) / ( n x / 2 ) ν {\displaystyle 0={\frac {1}{2\Gamma (\nu +1)}}+\sum _{n=1}^{\infty }(-1)^{n}J_{0}(nx)/(nx/2)^{\nu }} when 1 / 2 < ν 1 / 2 {\displaystyle -1/2<\nu \leq 1/2} and 0 < x < π {\displaystyle 0<x<\pi } and also when ν > 1 / 2 {\displaystyle \nu >1/2} and 0 < x π {\displaystyle 0<x\leq \pi } . These properties were identified by Niels Nielsen.[6]
  • x = π 2 4 2 n = 1 , 3 , . . . J 0 ( n x ) n 2 , 0 < x < π . {\displaystyle x={\frac {\pi ^{2}}{4}}-2\sum _{n=1,3,...}^{\infty }{\frac {J_{0}(nx)}{n^{2}}},\quad 0<x<\pi .}
  • x 2 = 2 π 2 3 + 8 n = 1 ( 1 ) n n 2 J 0 ( n x ) , π < x < π . {\displaystyle x^{2}={\frac {2\pi ^{2}}{3}}+8\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n^{2}}}J_{0}(nx),\quad -\pi <x<\pi .}
  • 1 x + m = 1 k 2 x 2 4 m 2 π 2 = 1 2 + n = 1 J 0 ( n x ) , 2 k π < x < 2 ( k + 1 ) π . {\displaystyle {\frac {1}{x}}+\sum _{m=1}^{k}{\frac {2}{\sqrt {x^{2}-4m^{2}\pi ^{2}}}}={\frac {1}{2}}+\sum _{n=1}^{\infty }J_{0}(nx),\quad 2k\pi <x<2(k+1)\pi .}
  • If ( r , z ) {\displaystyle (r,z)} are the cylindrical polar coordinates, then the series 1 + n = 1 e n z J 0 ( n r ) {\displaystyle 1+\sum _{n=1}^{\infty }e^{-nz}J_{0}(nr)} is a solution of Laplace equation for z > 0 {\displaystyle z>0} .

See also

  • Kapteyn series

References

  1. ^ Schlomilch, G. (1857). On Bessel's function. Zeitschrift fur Math, and Pkys., 2, 155-158.
  2. ^ Whittaker, E. T., & Watson, G. N. (1996). A Course of Modern Analysis. Cambridge university press.
  3. ^ Lord Rayleigh (1911). LXII. On a physical interpretation of Schlömilch's theorem in Bessel's functions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(124), 567-571.
  4. ^ Watson, G. N. (1995). A treatise on the theory of Bessel functions. Cambridge university press.
  5. ^ Chapman, S. (1911). On the general theory of summability, with application to Fourier's and other series. Quarterly Journal, 43, 1-52.
  6. ^ Nielsen, N. (1904). Handbuch der theorie der cylinderfunktionen. BG Teubner.