Sheaf of algebras

Type of ringed space

In algebraic geometry, a sheaf of algebras on a ringed space X is a sheaf of commutative rings on X that is also a sheaf of O X {\displaystyle {\mathcal {O}}_{X}} -modules. It is quasi-coherent if it is so as a module.

When X is a scheme, just like a ring, one can take the global Spec of a quasi-coherent sheaf of algebras: this results in the contravariant functor Spec X {\displaystyle \operatorname {Spec} _{X}} from the category of quasi-coherent (sheaves of) O X {\displaystyle {\mathcal {O}}_{X}} -algebras on X to the category of schemes that are affine over X (defined below). Moreover, it is an equivalence: the quasi-inverse is given by sending an affine morphism f : Y X {\displaystyle f:Y\to X} to f O Y . {\displaystyle f_{*}{\mathcal {O}}_{Y}.} [1]

Affine morphism

A morphism of schemes f : X Y {\displaystyle f:X\to Y} is called affine if Y {\displaystyle Y} has an open affine cover U i {\displaystyle U_{i}} 's such that f 1 ( U i ) {\displaystyle f^{-1}(U_{i})} are affine.[2] For example, a finite morphism is affine. An affine morphism is quasi-compact and separated; in particular, the direct image of a quasi-coherent sheaf along an affine morphism is quasi-coherent.

The base change of an affine morphism is affine.[3]

Let f : X Y {\displaystyle f:X\to Y} be an affine morphism between schemes and E {\displaystyle E} a locally ringed space together with a map g : E Y {\displaystyle g:E\to Y} . Then the natural map between the sets:

Mor Y ( E , X ) Hom O Y alg ( f O X , g O E ) {\displaystyle \operatorname {Mor} _{Y}(E,X)\to \operatorname {Hom} _{{\mathcal {O}}_{Y}-{\text{alg}}}(f_{*}{\mathcal {O}}_{X},g_{*}{\mathcal {O}}_{E})}

is bijective.[4]

Examples

  • Let f : X ~ X {\displaystyle f:{\widetilde {X}}\to X} be the normalization of an algebraic variety X. Then, since f is finite, f O X ~ {\displaystyle f_{*}{\mathcal {O}}_{\widetilde {X}}} is quasi-coherent and Spec X ( f O X ~ ) = X ~ {\displaystyle \operatorname {Spec} _{X}(f_{*}{\mathcal {O}}_{\widetilde {X}})={\widetilde {X}}} .
  • Let E {\displaystyle E} be a locally free sheaf of finite rank on a scheme X. Then Sym ( E ) {\displaystyle \operatorname {Sym} (E^{*})} is a quasi-coherent O X {\displaystyle {\mathcal {O}}_{X}} -algebra and Spec X ( Sym ( E ) ) X {\displaystyle \operatorname {Spec} _{X}(\operatorname {Sym} (E^{*}))\to X} is the associated vector bundle over X (called the total space of E {\displaystyle E} .)
  • More generally, if F is a coherent sheaf on X, then one still has Spec X ( Sym ( F ) ) X {\displaystyle \operatorname {Spec} _{X}(\operatorname {Sym} (F))\to X} , usually called the abelian hull of F; see Cone (algebraic geometry)#Examples.

The formation of direct images

Given a ringed space S, there is the category C S {\displaystyle C_{S}} of pairs ( f , M ) {\displaystyle (f,M)} consisting of a ringed space morphism f : X S {\displaystyle f:X\to S} and an O X {\displaystyle {\mathcal {O}}_{X}} -module M {\displaystyle M} . Then the formation of direct images determines the contravariant functor from C S {\displaystyle C_{S}} to the category of pairs consisting of an O S {\displaystyle {\mathcal {O}}_{S}} -algebra A and an A-module M that sends each pair ( f , M ) {\displaystyle (f,M)} to the pair ( f O , f M ) {\displaystyle (f_{*}{\mathcal {O}},f_{*}M)} .

Now assume S is a scheme and then let Aff S C S {\displaystyle \operatorname {Aff} _{S}\subset C_{S}} be the subcategory consisting of pairs ( f : X S , M ) {\displaystyle (f:X\to S,M)} such that f {\displaystyle f} is an affine morphism between schemes and M {\displaystyle M} a quasi-coherent sheaf on X {\displaystyle X} . Then the above functor determines the equivalence between Aff S {\displaystyle \operatorname {Aff} _{S}} and the category of pairs ( A , M ) {\displaystyle (A,M)} consisting of an O S {\displaystyle {\mathcal {O}}_{S}} -algebra A and a quasi-coherent A {\displaystyle A} -module M {\displaystyle M} .[5]

The above equivalence can be used (among other things) to do the following construction. As before, given a scheme S, let A be a quasi-coherent O S {\displaystyle {\mathcal {O}}_{S}} -algebra and then take its global Spec: f : X = Spec S ( A ) S {\displaystyle f:X=\operatorname {Spec} _{S}(A)\to S} . Then, for each quasi-coherent A-module M, there is a corresponding quasi-coherent O X {\displaystyle {\mathcal {O}}_{X}} -module M ~ {\displaystyle {\widetilde {M}}} such that f M ~ M , {\displaystyle f_{*}{\widetilde {M}}\simeq M,} called the sheaf associated to M. Put in another way, f {\displaystyle f_{*}} determines an equivalence between the category of quasi-coherent O X {\displaystyle {\mathcal {O}}_{X}} -modules and the quasi-coherent A {\displaystyle A} -modules.

See also

References

  1. ^ EGA 1971, Ch. I, Théorème 9.1.4. harvnb error: no target: CITEREFEGA1971 (help)
  2. ^ EGA 1971, Ch. I, Definition 9.1.1. harvnb error: no target: CITEREFEGA1971 (help)
  3. ^ Stacks Project, Tag 01S5.
  4. ^ EGA 1971, Ch. I, Proposition 9.1.5. harvnb error: no target: CITEREFEGA1971 (help)
  5. ^ EGA 1971, Ch. I, Théorème 9.2.1. harvnb error: no target: CITEREFEGA1971 (help)
  • Grothendieck, Alexandre; Dieudonné, Jean (1971). Éléments de géométrie algébrique: I. Le langage des schémas. Grundlehren der Mathematischen Wissenschaften (in French). Vol. 166 (2nd ed.). Berlin; New York: Springer-Verlag. ISBN 978-3-540-05113-8.
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • https://ncatlab.org/nlab/show/affine+morphism