Squirmer

Model in fluid dynamics
Spherical microswimmer in Stokes flow

The squirmer is a model for a spherical microswimmer swimming in Stokes flow. The squirmer model was introduced by James Lighthill in 1952 and refined and used to model Paramecium by John Blake in 1971.[1] [2] Blake used the squirmer model to describe the flow generated by a carpet of beating short filaments called cilia on the surface of Paramecium. Today, the squirmer is a standard model for the study of self-propelled particles, such as Janus particles, in Stokes flow.[3]

Velocity field in particle frame

Here we give the flow field of a squirmer in the case of a non-deformable axisymmetric spherical squirmer (radius R {\displaystyle R} ).[1][2] These expressions are given in a spherical coordinate system.

u r ( r , θ ) = 2 3 ( R 3 r 3 1 ) B 1 P 1 ( cos θ ) + n = 2 ( R n + 2 r n + 2 R n r n ) B n P n ( cos θ ) , {\displaystyle u_{r}(r,\theta )={\frac {2}{3}}\left({\frac {R^{3}}{r^{3}}}-1\right)B_{1}P_{1}(\cos \theta )+\sum _{n=2}^{\infty }\left({\frac {R^{n+2}}{r^{n+2}}}-{\frac {R^{n}}{r^{n}}}\right)B_{n}P_{n}(\cos \theta )\;,}
u θ ( r , θ ) = 2 3 ( R 3 2 r 3 + 1 ) B 1 V 1 ( cos θ ) + n = 2 1 2 ( n R n + 2 r n + 2 + ( 2 n ) R n r n ) B n V n ( cos θ ) . {\displaystyle u_{\theta }(r,\theta )={\frac {2}{3}}\left({\frac {R^{3}}{2r^{3}}}+1\right)B_{1}V_{1}(\cos \theta )+\sum _{n=2}^{\infty }{\frac {1}{2}}\left(n{\frac {R^{n+2}}{r^{n+2}}}+(2-n){\frac {R^{n}}{r^{n}}}\right)B_{n}V_{n}(\cos \theta )\;.}

Here B n {\displaystyle B_{n}} are constant coefficients, P n ( cos θ ) {\displaystyle P_{n}(\cos \theta )} are Legendre polynomials, and V n ( cos θ ) = 2 n ( n + 1 ) θ P n ( cos θ ) {\displaystyle V_{n}(\cos \theta )={\frac {-2}{n(n+1)}}\partial _{\theta }P_{n}(\cos \theta )} .
One finds P 1 ( cos θ ) = cos θ , P 2 ( cos θ ) = 1 2 ( 3 cos 2 θ 1 ) , , V 1 ( cos θ ) = sin θ , V 2 ( cos θ ) = 1 2 sin 2 θ , {\displaystyle P_{1}(\cos \theta )=\cos \theta ,P_{2}(\cos \theta )={\tfrac {1}{2}}(3\cos ^{2}\theta -1),\dots ,V_{1}(\cos \theta )=\sin \theta ,V_{2}(\cos \theta )={\tfrac {1}{2}}\sin 2\theta ,\dots } .
The expressions above are in the frame of the moving particle. At the interface one finds u θ ( R , θ ) = n = 1 B n V n {\displaystyle u_{\theta }(R,\theta )=\sum _{n=1}^{\infty }B_{n}V_{n}} and u r ( R , θ ) = 0 {\displaystyle u_{r}(R,\theta )=0} .

Shaker, β = {\displaystyle \beta =-\infty }
Pusher, β = 5 {\displaystyle \beta =-5}
Neutral, β = 0 {\displaystyle \beta =0}
Puller, β = 5 {\displaystyle \beta =5}
Shaker, β = {\displaystyle \beta =\infty }
Passive particle
Shaker, β = {\displaystyle \beta =-\infty }
Pusher, β = 5 {\displaystyle \beta =-5}
Neutral, β = 0 {\displaystyle \beta =0}
Puller, β = 5 {\displaystyle \beta =5}
Shaker, β = {\displaystyle \beta =\infty }
Passive particle
Velocity field of squirmer and passive particle (top row: lab frame, bottom row: swimmer frame, β = B 2 / | B 1 | {\displaystyle \beta =B_{2}/|B_{1}|} ).

Swimming speed and lab frame

By using the Lorentz Reciprocal Theorem, one finds the velocity vector of the particle U = 1 2 u ( R , θ ) sin θ d θ = 2 3 B 1 e z {\displaystyle \mathbf {U} =-{\tfrac {1}{2}}\int \mathbf {u} (R,\theta )\sin \theta \mathrm {d} \theta ={\tfrac {2}{3}}B_{1}\mathbf {e} _{z}} . The flow in a fixed lab frame is given by u L = u + U {\displaystyle \mathbf {u} ^{L}=\mathbf {u} +\mathbf {U} } :

u r L ( r , θ ) = R 3 r 3 U P 1 ( cos θ ) + n = 2 ( R n + 2 r n + 2 R n r n ) B n P n ( cos θ ) , {\displaystyle u_{r}^{L}(r,\theta )={\frac {R^{3}}{r^{3}}}UP_{1}(\cos \theta )+\sum _{n=2}^{\infty }\left({\frac {R^{n+2}}{r^{n+2}}}-{\frac {R^{n}}{r^{n}}}\right)B_{n}P_{n}(\cos \theta )\;,}
u θ L ( r , θ ) = R 3 2 r 3 U V 1 ( cos θ ) + n = 2 1 2 ( n R n + 2 r n + 2 + ( 2 n ) R n r n ) B n V n ( cos θ ) . {\displaystyle u_{\theta }^{L}(r,\theta )={\frac {R^{3}}{2r^{3}}}UV_{1}(\cos \theta )+\sum _{n=2}^{\infty }{\frac {1}{2}}\left(n{\frac {R^{n+2}}{r^{n+2}}}+(2-n){\frac {R^{n}}{r^{n}}}\right)B_{n}V_{n}(\cos \theta )\;.}

with swimming speed U = | U | {\displaystyle U=|\mathbf {U} |} . Note, that lim r u L = 0 {\displaystyle \lim _{r\rightarrow \infty }\mathbf {u} ^{L}=0} and u r L ( R , θ ) 0 {\displaystyle u_{r}^{L}(R,\theta )\neq 0} .

Structure of the flow and squirmer parameter

The series above are often truncated at n = 2 {\displaystyle n=2} in the study of far field flow, r R {\displaystyle r\gg R} . Within that approximation, u θ ( R , θ ) = B 1 sin θ + 1 2 B 2 sin 2 θ {\displaystyle u_{\theta }(R,\theta )=B_{1}\sin \theta +{\tfrac {1}{2}}B_{2}\sin 2\theta } , with squirmer parameter β = B 2 / | B 1 | {\displaystyle \beta =B_{2}/|B_{1}|} . The first mode n = 1 {\displaystyle n=1} characterizes a hydrodynamic source dipole with decay 1 / r 3 {\displaystyle \propto 1/r^{3}} (and with that the swimming speed U {\displaystyle U} ). The second mode n = 2 {\displaystyle n=2} corresponds to a hydrodynamic stresslet or force dipole with decay 1 / r 2 {\displaystyle \propto 1/r^{2}} .[4] Thus, β {\displaystyle \beta } gives the ratio of both contributions and the direction of the force dipole. β {\displaystyle \beta } is used to categorize microswimmers into pushers, pullers and neutral swimmers.[5]

Swimmer Type pusher neutral swimmer puller shaker passive particle
Squirmer Parameter β < 0 {\displaystyle \beta <0} β = 0 {\displaystyle \beta =0} β > 0 {\displaystyle \beta >0} β = ± {\displaystyle \beta =\pm \infty }
Decay of Velocity Far Field u 1 / r 2 {\displaystyle \mathbf {u} \propto 1/r^{2}} u 1 / r 3 {\displaystyle \mathbf {u} \propto 1/r^{3}} u 1 / r 2 {\displaystyle \mathbf {u} \propto 1/r^{2}} u 1 / r 2 {\displaystyle \mathbf {u} \propto 1/r^{2}} u 1 / r {\displaystyle \mathbf {u} \propto 1/r}
Biological Example E.Coli Paramecium Chlamydomonas reinhardtii

The above figures show the velocity field in the lab frame and in the particle-fixed frame. The hydrodynamic dipole and quadrupole fields of the squirmer model result from surface stresses, due to beating cilia on bacteria, or chemical reactions or thermal non-equilibrium on Janus particles. The squirmer is force-free. On the contrary, the velocity field of the passive particle results from an external force, its far-field corresponds to a "stokeslet" or hydrodynamic monopole. A force-free passive particle doesn't move and doesn't create any flow field.

See also

  • Protist locomotion

References

  1. ^ a b Lighthill, M. J. (1952). "On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers". Communications on Pure and Applied Mathematics. 5 (2): 109–118. doi:10.1002/cpa.3160050201. ISSN 0010-3640.
  2. ^ a b Blake, J. R. (1971). "A spherical envelope approach to ciliary propulsion". Journal of Fluid Mechanics. 46 (1): 199–208. Bibcode:1971JFM....46..199B. doi:10.1017/S002211207100048X. ISSN 0022-1120. S2CID 122519123.
  3. ^ Bickel, Thomas; Majee, Arghya; Würger, Alois (2013). "Flow pattern in the vicinity of self-propelling hot Janus particles". Physical Review E. 88 (1): 012301. arXiv:1401.7311. Bibcode:2013PhRvE..88a2301B. doi:10.1103/PhysRevE.88.012301. ISSN 1539-3755. PMID 23944457. S2CID 36558271.
  4. ^ Happel, John; Brenner, Howard (1981). Low Reynolds number hydrodynamics. Mechanics of fluids and transport processes. Vol. 1. doi:10.1007/978-94-009-8352-6. ISBN 978-90-247-2877-0. ISSN 0921-3805.
  5. ^ Downton, Matthew T; Stark, Holger (2009). "Simulation of a model microswimmer". Journal of Physics: Condensed Matter. 21 (20): 204101. Bibcode:2009JPCM...21t4101D. doi:10.1088/0953-8984/21/20/204101. ISSN 0953-8984. PMID 21825510. S2CID 35850530.