Inductive tensor product

The finest locally convex topological vector space (TVS) topology on X Y , {\displaystyle X\otimes Y,} the tensor product of two locally convex TVSs, making the canonical map : X × Y X Y {\displaystyle \cdot \otimes \cdot :X\times Y\to X\otimes Y} (defined by sending ( x , y ) X × Y {\displaystyle (x,y)\in X\times Y} to x y {\displaystyle x\otimes y} ) separately continuous is called the inductive topology or the ι {\displaystyle \iota } -topology. When X Y {\displaystyle X\otimes Y} is endowed with this topology then it is denoted by X ι Y {\displaystyle X\otimes _{\iota }Y} and called the inductive tensor product of X {\displaystyle X} and Y . {\displaystyle Y.} [1]

Preliminaries

Throughout let X , Y , {\displaystyle X,Y,} and Z {\displaystyle Z} be locally convex topological vector spaces and L : X Y {\displaystyle L:X\to Y} be a linear map.

  • L : X Y {\displaystyle L:X\to Y} is a topological homomorphism or homomorphism, if it is linear, continuous, and L : X Im L {\displaystyle L:X\to \operatorname {Im} L} is an open map, where Im L , {\displaystyle \operatorname {Im} L,} the image of L , {\displaystyle L,} has the subspace topology induced by Y . {\displaystyle Y.}
    • If S X {\displaystyle S\subseteq X} is a subspace of X {\displaystyle X} then both the quotient map X X / S {\displaystyle X\to X/S} and the canonical injection S X {\displaystyle S\to X} are homomorphisms. In particular, any linear map L : X Y {\displaystyle L:X\to Y} can be canonically decomposed as follows: X X / ker L L 0 Im L Y {\displaystyle X\to X/\operatorname {ker} L{\overset {L_{0}}{\rightarrow }}\operatorname {Im} L\to Y} where L 0 ( x + ker L ) := L ( x ) {\displaystyle L_{0}(x+\ker L):=L(x)} defines a bijection.
  • The set of continuous linear maps X Z {\displaystyle X\to Z} (resp. continuous bilinear maps X × Y Z {\displaystyle X\times Y\to Z} ) will be denoted by L ( X ; Z ) {\displaystyle L(X;Z)} (resp. B ( X , Y ; Z ) {\displaystyle B(X,Y;Z)} ) where if Z {\displaystyle Z} is the scalar field then we may instead write L ( X ) {\displaystyle L(X)} (resp. B ( X , Y ) {\displaystyle B(X,Y)} ).
  • We will denote the continuous dual space of X {\displaystyle X} by X {\displaystyle X^{\prime }} and the algebraic dual space (which is the vector space of all linear functionals on X , {\displaystyle X,} whether continuous or not) by X # . {\displaystyle X^{\#}.}
    • To increase the clarity of the exposition, we use the common convention of writing elements of X {\displaystyle X^{\prime }} with a prime following the symbol (e.g. x {\displaystyle x^{\prime }} denotes an element of X {\displaystyle X^{\prime }} and not, say, a derivative and the variables x {\displaystyle x} and x {\displaystyle x^{\prime }} need not be related in any way).
  • A linear map L : H H {\displaystyle L:H\to H} from a Hilbert space into itself is called positive if L ( x ) , X 0 {\displaystyle \langle L(x),X\rangle \geq 0} for every x H . {\displaystyle x\in H.} In this case, there is a unique positive map r : H H , {\displaystyle r:H\to H,} called the square-root of L , {\displaystyle L,} such that L = r r . {\displaystyle L=r\circ r.} [2]
    • If L : H 1 H 2 {\displaystyle L:H_{1}\to H_{2}} is any continuous linear map between Hilbert spaces, then L L {\displaystyle L^{*}\circ L} is always positive. Now let R : H H {\displaystyle R:H\to H} denote its positive square-root, which is called the absolute value of L . {\displaystyle L.} Define U : H 1 H 2 {\displaystyle U:H_{1}\to H_{2}} first on Im R {\displaystyle \operatorname {Im} R} by setting U ( x ) = L ( x ) {\displaystyle U(x)=L(x)} for x = R ( x 1 ) Im R {\displaystyle x=R\left(x_{1}\right)\in \operatorname {Im} R} and extending U {\displaystyle U} continuously to Im R ¯ , {\displaystyle {\overline {\operatorname {Im} R}},} and then define U {\displaystyle U} on ker R {\displaystyle \operatorname {ker} R} by setting U ( x ) = 0 {\displaystyle U(x)=0} for x ker R {\displaystyle x\in \operatorname {ker} R} and extend this map linearly to all of H 1 . {\displaystyle H_{1}.} The map U | Im R : Im R Im L {\displaystyle U{\big \vert }_{\operatorname {Im} R}:\operatorname {Im} R\to \operatorname {Im} L} is a surjective isometry and L = U R . {\displaystyle L=U\circ R.}
  • A linear map Λ : X Y {\displaystyle \Lambda :X\to Y} is called compact or completely continuous if there is a neighborhood U {\displaystyle U} of the origin in X {\displaystyle X} such that Λ ( U ) {\displaystyle \Lambda (U)} is precompact in Y . {\displaystyle Y.} [3]
    • In a Hilbert space, positive compact linear operators, say L : H H {\displaystyle L:H\to H} have a simple spectral decomposition discovered at the beginning of the 20th century by Fredholm and F. Riesz:[4]
There is a sequence of positive numbers, decreasing and either finite or else converging to 0, r 1 > r 2 > > r k > {\displaystyle r_{1}>r_{2}>\cdots >r_{k}>\cdots } and a sequence of nonzero finite dimensional subspaces V i {\displaystyle V_{i}} of H {\displaystyle H} ( i = 1 , 2 , {\displaystyle i=1,2,\ldots } ) with the following properties: (1) the subspaces V i {\displaystyle V_{i}} are pairwise orthogonal; (2) for every i {\displaystyle i} and every x V i , {\displaystyle x\in V_{i},} L ( x ) = r i x {\displaystyle L(x)=r_{i}x} ; and (3) the orthogonal of the subspace spanned by i V i {\displaystyle \cup _{i}V_{i}} is equal to the kernel of L . {\displaystyle L.} [4]

Notation for topologies

Universal property

Suppose that Z {\displaystyle Z} is a locally convex space and that I {\displaystyle I} is the canonical map from the space of all bilinear mappings of the form X × Y Z , {\displaystyle X\times Y\to Z,} going into the space of all linear mappings of X Y Z . {\displaystyle X\otimes Y\to Z.} [1] Then when the domain of I {\displaystyle I} is restricted to B ( X , Y ; Z ) {\displaystyle {\mathcal {B}}(X,Y;Z)} (the space of separately continuous bilinear maps) then the range of this restriction is the space L ( X ι Y ; Z ) {\displaystyle L\left(X\otimes _{\iota }Y;Z\right)} of continuous linear operators X ι Y Z . {\displaystyle X\otimes _{\iota }Y\to Z.} In particular, the continuous dual space of X ι Y {\displaystyle X\otimes _{\iota }Y} is canonically isomorphic to the space B ( X , Y ) , {\displaystyle {\mathcal {B}}(X,Y),} the space of separately continuous bilinear forms on X × Y . {\displaystyle X\times Y.}

If τ {\displaystyle \tau } is a locally convex TVS topology on X Y {\displaystyle X\otimes Y} ( X Y {\displaystyle X\otimes Y} with this topology will be denoted by X τ Y {\displaystyle X\otimes _{\tau }Y} ), then τ {\displaystyle \tau } is equal to the inductive tensor product topology if and only if it has the following property:[5]

For every locally convex TVS Z , {\displaystyle Z,} if I {\displaystyle I} is the canonical map from the space of all bilinear mappings of the form X × Y Z , {\displaystyle X\times Y\to Z,} going into the space of all linear mappings of X Y Z , {\displaystyle X\otimes Y\to Z,} then when the domain of I {\displaystyle I} is restricted to B ( X , Y ; Z ) {\displaystyle {\mathcal {B}}(X,Y;Z)} (space of separately continuous bilinear maps) then the range of this restriction is the space L ( X τ Y ; Z ) {\displaystyle L\left(X\otimes _{\tau }Y;Z\right)} of continuous linear operators X τ Y Z . {\displaystyle X\otimes _{\tau }Y\to Z.}

See also

  • Auxiliary normed spaces
  • Initial topology – Coarsest topology making certain functions continuous
  • Injective tensor product
  • Nuclear operator – Linear operator related to topological vector spaces
  • Nuclear space – A generalization of finite-dimensional Euclidean spaces different from Hilbert spaces
  • Projective tensor product – tensor product defined on two topological vector spacesPages displaying wikidata descriptions as a fallback
  • Tensor product of Hilbert spaces – Tensor product space endowed with a special inner product
  • Topological tensor product – Tensor product constructions for topological vector spaces

References

  1. ^ a b Schaefer & Wolff 1999, p. 96.
  2. ^ Trèves 2006, p. 488.
  3. ^ Trèves 2006, p. 483.
  4. ^ a b Trèves 2006, p. 490.
  5. ^ Grothendieck 1966, p. 73.

Bibliography

  • Diestel, Joe (2008). The metric theory of tensor products : Grothendieck's résumé revisited. Providence, R.I: American Mathematical Society. ISBN 978-0-8218-4440-3. OCLC 185095773.
  • Dubinsky, Ed (1979). The structure of nuclear Fréchet spaces. Berlin New York: Springer-Verlag. ISBN 3-540-09504-7. OCLC 5126156.
  • Grothendieck, Alexander (1966). Produits tensoriels topologiques et espaces nucléaires (in French). Providence: American Mathematical Society. ISBN 0-8218-1216-5. OCLC 1315788.
  • Husain, Taqdir (1978). Barrelledness in topological and ordered vector spaces. Berlin New York: Springer-Verlag. ISBN 3-540-09096-7. OCLC 4493665.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Nlend, H (1977). Bornologies and functional analysis : introductory course on the theory of duality topology-bornology and its use in functional analysis. Amsterdam New York New York: North-Holland Pub. Co. Sole distributors for the U.S.A. and Canada, Elsevier-North Holland. ISBN 0-7204-0712-5. OCLC 2798822.
  • Nlend, H (1981). Nuclear and conuclear spaces : introductory courses on nuclear and conuclear spaces in the light of the duality. Amsterdam New York New York, N.Y: North-Holland Pub. Co. Sole distributors for the U.S.A. and Canada, Elsevier North-Holland. ISBN 0-444-86207-2. OCLC 7553061.
  • Pietsch, Albrecht (1972). Nuclear locally convex spaces. Berlin, New York: Springer-Verlag. ISBN 0-387-05644-0. OCLC 539541.
  • Robertson, A. P. (1973). Topological vector spaces. Cambridge England: University Press. ISBN 0-521-29882-2. OCLC 589250.
  • Ryan, Raymond (2002). Introduction to tensor products of Banach spaces. London New York: Springer. ISBN 1-85233-437-1. OCLC 48092184.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wong (1979). Schwartz spaces, nuclear spaces, and tensor products. Berlin New York: Springer-Verlag. ISBN 3-540-09513-6. OCLC 5126158.
  • Nuclear space at ncatlab
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category