Phospholamban

Mammalian protein found in Homo sapiens
Phospholamban pentamer
Identifiers
SymbolPhospholamban
PfamPF04272
InterProIPR005984
SCOP21fjk / SCOPe / SUPFAM
TCDB1.A.50
OPM superfamily62
OPM protein1zll
Membranome383
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PLN
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1PLP, 1ZLL, 2HYN

Identifiers
AliasesPLN, CMD1P, CMH18, PLB, phospholamban
External IDsOMIM: 172405; MGI: 97622; HomoloGene: 136758; GeneCards: PLN; OMA:PLN - orthologs
Gene location (Human)
Chromosome 6 (human)
Chr.Chromosome 6 (human)[1]
Chromosome 6 (human)
Genomic location for PLN
Genomic location for PLN
Band6q22.31Start118,548,296 bp[1]
End118,561,716 bp[1]
Gene location (Mouse)
Chromosome 10 (mouse)
Chr.Chromosome 10 (mouse)[2]
Chromosome 10 (mouse)
Genomic location for PLN
Genomic location for PLN
Band10|10 B3Start53,213,763 bp[2]
End53,222,083 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right ventricle

  • myocardium

  • myocardium of left ventricle

  • cardiac muscle tissue of right atrium

  • vena cava

  • Skeletal muscle tissue of rectus abdominis

  • biceps brachii

  • Skeletal muscle tissue of biceps brachii

  • tail of epididymis

  • triceps brachii muscle
Top expressed in
  • interventricular septum

  • right ventricle

  • cardiac muscles

  • myocardium of ventricle

  • atrioventricular valve

  • left ventricle

  • aortic valve

  • endocardial cushion

  • atrium

  • extraocular muscle
More reference expression data
BioGPS




More reference expression data
Gene ontology
Molecular function
  • enzyme inhibitor activity
  • ATPase binding
  • calcium channel regulator activity
  • protein binding
  • ATPase inhibitor activity
  • identical protein binding
  • protein homodimerization activity
Cellular component
  • integral component of membrane
  • vesicle
  • endoplasmic reticulum membrane
  • membrane
  • mitochondrial membranes
  • sarcoplasmic reticulum
  • endoplasmic reticulum
  • mitochondrion
  • sarcoplasmic reticulum membrane
  • perinuclear region of cytoplasm
  • calcium ion-transporting ATPase complex
  • protein-containing complex
Biological process
  • Notch signaling pathway
  • regulation of ryanodine-sensitive calcium-release channel activity
  • negative regulation of calcium ion binding
  • regulation of cardiac conduction
  • regulation of calcium ion transport
  • negative regulation of catalytic activity
  • regulation of heart contraction
  • regulation of cytosolic calcium ion concentration
  • cardiac muscle tissue development
  • negative regulation of heart contraction
  • response to testosterone
  • regulation of the force of heart contraction
  • regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion
  • negative regulation of ATP-dependent activity
  • regulation of ATPase-coupled calcium transmembrane transporter activity
  • regulation of calcium ion import
  • response to zinc ion
  • cellular calcium ion homeostasis
  • regulation of relaxation of cardiac muscle
  • negative regulation of calcium ion transmembrane transporter activity
  • blood circulation
  • negative regulation of heart rate
  • negative regulation of calcium ion import
  • response to insulin
  • regulation of cardiac muscle cell contraction
  • negative regulation of ATPase-coupled calcium transmembrane transporter activity
  • negative regulation of calcium ion transport
  • adenylate cyclase-activating adrenergic receptor signaling pathway involved in heart process
  • regulation of cardiac muscle cell membrane potential
  • regulation of the force of heart contraction by cardiac conduction
  • regulation of relaxation of muscle
  • negative regulation of calcium ion import into sarcoplasmic reticulum
  • protein homooligomerization
  • regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum
  • relaxation of cardiac muscle
  • calcium ion transport
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

5350

18821

Ensembl

ENSG00000198523

ENSMUSG00000038583

UniProt

P26678

P61014

RefSeq (mRNA)

NM_002667

NM_001141927
NM_023129

RefSeq (protein)

NP_002658

NP_001135399
NP_075618

Location (UCSC)Chr 6: 118.55 – 118.56 MbChr 10: 53.21 – 53.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Phospholamban, also known as PLN or PLB, is a micropeptide protein that in humans is encoded by the PLN gene.[5] Phospholamban is a 52-amino acid integral membrane protein that regulates the calcium (Ca2+) pump in cardiac muscle cells.[6]

Function

This protein is found as a pentamer and is a major substrate for the cAMP-dependent protein kinase (PKA) in cardiac muscle. In the unphosphorylated state, phospholamban is an inhibitor of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2)[7] which transports calcium from cytosol into the sarcoplasmic reticulum. When phosphorylated (by PKA) - disinhibition of Ca2+-ATPase of SR leads to faster Ca2+ uptake into the sarcoplasmic reticulum, thereby contributing to the lusitropic response elicited in heart by beta-agonists.[8] The protein is a key regulator of cardiac diastolic function. Mutations in this gene are a cause of inherited human dilated cardiomyopathy with refractory congestive heart failure.[9]

When phospholamban is phosphorylated by PKA, its ability to inhibit SERCA2 is lost.[10] Thus, activators of PKA, such as the beta-adrenergic agonist epinephrine (released by sympathetic stimulation), may enhance the rate of cardiac myocyte relaxation. In addition, since SERCA2 is more active, the next action potential will cause an increased release of calcium, resulting in increased contraction (positive inotropic effect). When phospholamban is not phosphorylated, such as when PKA is inactive, it can interact with and inhibit SERCA. Thus, the overall effect of unphosphorylated phospholamban is to decrease contractility and the rate of muscle relaxation, thereby decreasing stroke volume and heart rate, respectively.[11]

Clinical significance

Gene knockout of phospholamban results in animals with hyperdynamic hearts, with little apparent negative consequence.[12]

Mutations in this gene are a cause of inherited human dilated cardiomyopathy with refractory congestive heart failure.[13][14]

Discovery

Phospholamban was discovered by Arnold Martin Katz and coworkers in 1974.[15]

Interactions

PLN has been shown to interact with SLN[16][17] and SERCA1.[17][18][19]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000198523 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000038583 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Fujii J, Zarain-Herzberg A, Willard HF, Tada M, MacLennan DH (June 1991). "Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6". The Journal of Biological Chemistry. 266 (18): 11669–75. doi:10.1016/S0021-9258(18)99009-5. PMID 1828805.
  6. ^ Rodriguez P, Kranias EG (December 2005). "Phospholamban: a key determinant of cardiac function and dysfunction". Archives des Maladies du Coeur et des Vaisseaux. 98 (12): 1239–43. PMID 16435604.
  7. ^ "InterPro".
  8. ^ Hagemann D, Xiao RP (February 2002). "Dual site phospholamban phosphorylation and its physiological relevance in the heart". Trends in Cardiovascular Medicine. 12 (2): 51–6. doi:10.1016/S1050-1738(01)00145-1. PMID 11852250.
  9. ^ "Entrez Gene: PLN phospholamban".
  10. ^ Medical Physiology. Philadelphia: Saunders. 2004. ISBN 0-8089-2333-1.
  11. ^ Brittsan AG, Kranias EG (December 2000). "Phospholamban and cardiac contractile function". Journal of Molecular and Cellular Cardiology. 32 (12): 2131–9. doi:10.1006/jmcc.2000.1270. PMID 11112989.
  12. ^ Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG (September 1994). "Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation". Circulation Research. 75 (3): 401–9. doi:10.1161/01.res.75.3.401. PMID 8062415.
  13. ^ Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, Kranias EG, MacLennan DH, Seidman JG, Seidman CE (February 2003). "Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban". Science. 299 (5611): 1410–3. doi:10.1126/science.1081578. PMID 12610310. S2CID 12253445.
  14. ^ Eijgenraam TR, Boukens BJ, Boogerd CJ, Schouten EM, van de Kolk CW, Stege NM, te Rijdt WP, Hoorntje ET, van der Zwaag PA, van Rooij E, van Tintelen JP, van den Berg MP, van der Meer P, van der Velden J, Silljé HH, de Boer RA (17 June 2020). "The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unreponsive to standard heart failure therapy". Scientific Reports. 10 (1): 9819. Bibcode:2020NatSR..10.9819E. doi:10.1038/s41598-020-66656-9. PMC 7300032. PMID 32555305.
  15. ^ Tada M, Kirchberger MA, Repke DI, Katz AM (October 1974). "The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase". The Journal of Biological Chemistry. 249 (19): 6174–80. doi:10.1016/S0021-9258(19)42237-0. PMID 4371608.
  16. ^ Asahi M, Sugita Y, Kurzydlowski K, De Leon S, Tada M, Toyoshima C, MacLennan DH (April 2003). "Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban". Proceedings of the National Academy of Sciences of the United States of America. 100 (9): 5040–5. Bibcode:2003PNAS..100.5040A. doi:10.1073/pnas.0330962100. PMC 154294. PMID 12692302.
  17. ^ a b Asahi M, Kurzydlowski K, Tada M, MacLennan DH (July 2002). "Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs)". The Journal of Biological Chemistry. 277 (30): 26725–8. doi:10.1074/jbc.C200269200. PMID 12032137.
  18. ^ Asahi M, Kimura Y, Kurzydlowski K, Tada M, MacLennan DH (November 1999). "Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca(2+)-ATPase forms a functional interaction site with phospholamban. Evidence for physical interactions at other sites". The Journal of Biological Chemistry. 274 (46): 32855–62. doi:10.1074/jbc.274.46.32855. PMID 10551848.
  19. ^ Asahi M, Green NM, Kurzydlowski K, Tada M, MacLennan DH (August 2001). "Phospholamban domain IB forms an interaction site with the loop between transmembrane helices M6 and M7 of sarco(endo)plasmic reticulum Ca2+ ATPases". Proceedings of the National Academy of Sciences of the United States of America. 98 (18): 10061–6. Bibcode:2001PNAS...9810061A. doi:10.1073/pnas.181348298. PMC 56915. PMID 11526231.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


  • PDBe-KB provides an overview of all the structure information available in the PDB for Human Cardiac phospholamban
  • v
  • t
  • e
  • 1fjk: NMR Solution Structure of Phospholamban (C41F)
    1fjk: NMR Solution Structure of Phospholamban (C41F)
  • 1fjp: NMR Solution Structure of Phospholamban (C41F)
    1fjp: NMR Solution Structure of Phospholamban (C41F)
  • 1n7l: Solution NMR structure of phospholamban in detergent micelles
    1n7l: Solution NMR structure of phospholamban in detergent micelles
  • 1zll: NMR Structure of Unphosphorylated Human Phospholamban Pentamer
    1zll: NMR Structure of Unphosphorylated Human Phospholamban Pentamer
  • v
  • t
  • e
Cell membrane
Adhesion molecules
Calcium channels
Calcium pumps
GPCRs
Annexins
Intracellular signaling
Second messengers
Intracellular channels
Intracellular pumps
Sensors and chelators
Calcium-dependent chaperones
Calcium-dependent kinases
Calcium-dependent proteases
Indirect regulators
Extracellular chelators
Extracellular matrix proteins
Secreted hormones
Calcium-binding domains