Número de Perrin

Em matemática os números de Perrin são definidos pela relação de recorrência

P(n) = P(n − 2) + P(n − 3) para n > 2,

com valores iniciais

P(0) = 3, P(1) = 0, P(2) = 2.

A sequência dos números de Perrin começa com

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, ... (sequência A001608 na OEIS)

O número de diferentes conjuntos independentes máximos em um n-vértice grafo ciclo é contado pelo n-ésimo número de Perrin para n > 1.[1]

História

Esta sequência foi mencionada implicitamente por Édouard Lucas (1876). Em 1899 e mesma sequência foi mencionada explicitamente por Raoul Perrin.[2] O mais extensivo tratamento desta sequência foi dado por Adams e Shanks (1982).

Propriedades

Função geratriz

A função geratriz da sequência de Perrin é

G ( P ( n ) ; x ) = 3 x 2 1 x 2 x 3 . {\displaystyle G(P(n);x)={\frac {3-x^{2}}{1-x^{2}-x^{3}}}.}

Fórmula matricial

( 0 1 0 0 0 1 1 1 0 ) n ( 3 0 2 ) = ( P ( n ) P ( n + 1 ) P ( n + 2 ) ) {\displaystyle {\begin{pmatrix}0&1&0\\0&0&1\\1&1&0\end{pmatrix}}^{n}{\begin{pmatrix}3\\0\\2\end{pmatrix}}={\begin{pmatrix}P\left(n\right)\\P\left(n+1\right)\\P\left(n+2\right)\end{pmatrix}}}

Fórmula tipo Binet

Espiral de triângulos equilaterais com comprimentos de lado que seguem a sequência de Perrin

Os números da sequência de Perrin podem ser escritos em termos das potências das raízes da equação

x 3 x 1 = 0. {\displaystyle x^{3}-x-1=0.}

esta equação tem 3 rraízes; uma raiz real p (conhecida como número plástico) e duas raízes complexas conjugadas q e r. dadas estas três raízes, a sequência de Perrin análoga à fórmula de Binet da sequência de Lucas é

P ( n ) = p n + q n + r n . {\displaystyle P\left(n\right)={p^{n}}+{q^{n}}+{r^{n}}.}

Como as magnitudes das raízes complexas q e r são ambas menores que 1, as potências destas raízes convergem para 0 para n grande, e a fórmula se reduz a

P ( n ) p n . {\displaystyle P\left(n\right)\approx {p^{n}}.}

esta fórmula pode ser usada para calcular rapidamente valores da sequência de Perrin para n grande. A razão de termos sucessivos na sequência de Perrin se aproxima de p, também conhecido como número plástico, que tem um valor de aproximadamente 1,324718. esta constante tem a mesma relação com a sequência de Perrin como acontece com a proporção áurea em relação à sequência de Lucas. Conexões similares também exestem entre p e a sequência de Padovan, entre a proporção áurea e os números de Fibonacci, e entre a proporção prateada e os números de Pell.

Referências

Bibliografia

  • Füredi, Z. (1987). «The number of maximal independent sets in connected graphs». Journal of Graph Theory. 11 (4): 463–470. doi:10.1002/jgt.3190110403 

Leitura adicional

  • Adams, William; Shanks, Daniel (1982). «Strong primality tests that are not sufficient». American Mathematical Society. Mathematics of Computation. 39 (159): 255–300. JSTOR 2007637. MR 0658231. doi:10.2307/2007637 
  • Perrin, R. (1899). «Query 1484». L'Intermédiaire des Mathématiciens. 6. 76 páginas 
  • Lucas, E. (1878). «Théorie des fonctions numériques simplement périodiques». The Johns Hopkins University Press. American Journal of Mathematics. 1 (3): 197–240. JSTOR 2369311. doi:10.2307/2369311 

Ligações externas

  • Zentrum für Hirnforschung Institut für Medizinische Kybernetik und Artificial Intelligence
  • Perrin Primality Tests
  • v
  • d
  • e
Classes de números primos
Por fórmula
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Duplo de Mersenne 22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Fatorial (n! ± 1)
  • Euclides (pn# + 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Leyland (xy + yx)
  • Mills (A3n)
Por propriedade
Dependentes de base
Padrões
  • Gêmeos (p, p + 2)
  • Chen
  • Equilibrado (consecutivos pn, p, p + n)
Por dimensão
Números compostos
Tópicos relacionados
  • v
  • d
  • e
Potências e números relacionados
Da forma a × 2b ± 1
Outros números polinomiais
  • Carol
  • Hilbert
  • Idôneo
  • Kynea
  • Leyland
  • Números da sorte de Euler
  • Repunit
Números definidos recursivamente
Possuindo um conjunto específico
de outros números
Expressáveis via somas específicas
  • Não-hipotenusa
  • Polido
  • Prático
  • Primário pseudoperfeito
  • Ulam
  • Wolstenholme
Gerado via uma teoria dos crivos
  • Sorte
Relacionado a codificação
  • Meertens
Números figurados
2D
centrado
  • Triangular centrado
  • Quadrado centrado
  • Pentagonal centrado
  • Hexagonal centrado
  • Heptagonal centrado
  • Octagonal centrado
  • Nonagonal centrado
  • Decagonal centrado
  • Estrela
não-centrado
3D
centrado
  • Tetraédrico centrado
  • Cúbico centrado
  • Octaédrico centrado
  • Dodecaédrico centrado
  • Icosaédrico centrado
Não-centrado
  • Tetraédrico
  • Octaédrico
  • Dodecaédrico
  • Icosaédrico
  • Stella octangula
Piramidal
4D
centrado
  • Pentácoro centrado
  • Triangular quadrado
Não-centrado
  • Pentácoro
Pseudoprimos
  • Número de Carmichael
  • Pseudoprimo de Catalan
  • Pseudoprimo elíptico
  • Pseudoprimo de Euler
  • Pseudoprimo de Euler–Jacobi
  • Pseudoprimo de Fermat
  • Pseudoprimo de Frobenius
  • Pseudoprimo de Lucas
  • Pseudoprimo de Somer–Lucas
  • Pseudoprimo forte
Números combinatoriais
  • Bell
  • Bolo
  • Catalan
  • Dedekind
  • Delannoy
  • Euler
  • Fuss–Catalan
  • Número poligonal central
  • Lobb
  • Motzkin
  • Narayana
  • Ordenado de Bell
  • Schröder
  • Schröder–Hipparchus
Funções aritméticas
Por propriedades de σ(n)
  • Abundante
  • Quase perfeito
  • Aritmético
  • Colossalmente abundante
  • Descartes
  • Hemiperfeito
  • Altamente abundante
  • Altamente composto
  • Hyperperfeito
  • Multiplamente perfeito
  • Perfeito
  • Número prático
  • Primitivo abundante
  • Quase perfeito
  • Refactorável
  • Sublime
  • Superabundante
  • Superior altamente composto
  • Superperfeito
Por propriedades de Ω(n)
Por propriedades de φ(n)
  • Altamente cototiente
  • Altamente totiente
  • Não-cototiente
  • Não-totiente
  • Perfeito totiente
  • Esparsamente totiente
Por propriedades de s(n)
Dividindo um quociente
  • Wieferich
  • Wall–Sun–Sun
  • Primo de Wolstenholme
  • Wilson
  • Outros números relacionados com
    fator primo ou divisor
    • Blum
    • Erdős–Woods
    • Friendly
    • Frugal
    • Giuga
    • Harmônico divisor
    • Lucas–Carmichael
    • Oblongo
    • Regular
    • Rugoso
    • Liso
    • Sociável
    • Esfênico
    • Størmer
    • Super-Poulet
    • Zeisel
    Matemática recreativa
    Números
    dependentes de base
    • Sequência de Aronson
    • Ban
    • Número panqueca