Solar eclipse of August 31, 1970

20th-century annular solar eclipse
20°18′S 164°00′W / 20.3°S 164°W / -20.3; -164Max. width of band258 km (160 mi)Times (UTC)Greatest eclipse21:55:30ReferencesSaros144 (14 of 70)Catalog # (SE5000)9443

An annular solar eclipse occurred at the Moon's descending node of orbit between Monday, August 31 and Tuesday, September 1, 1970, with a magnitude of 0.94. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Territory of Papua and New Guinea (today's Papua New Guinea), Gilbert and Ellice Islands (the part that belongs to Tuvalu now) on September 1 (Tuesday), West Samoa (name changed to Samoa later) and the whole American Samoa except Swains Island on August 31 (Monday).

Related eclipses

Eclipses in 1970

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 144

Inex

Triad

Solar eclipses of 1968–1971

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1968 to 1971
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 March 28, 2968

Partial
−1.037 124 September 22, 1968

Total
0.9451
129 March 18, 1969

Annular
−0.2704 134 September 11, 1969

Annular
0.2201
139

Totality in Williamston, NC
USA
March 7, 1970

Total
0.4473 144 August 31, 1970

Annular
−0.5364
149 February 25, 1971

Partial
1.1188 154 August 20, 1971

Partial
−1.2659

Saros 144

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 5–26 occur between 1801 and 2200:
5 6 7

May 25, 1808

June 5, 1826

June 16, 1844
8 9 10

June 27, 1862

July 7, 1880

July 18, 1898
11 12 13

July 30, 1916

August 10, 1934

August 20, 1952
14 15 16

August 31, 1970

September 11, 1988

September 22, 2006
17 18 19

October 2, 2024

October 14, 2042

October 24, 2060
20 21 22

November 4, 2078

November 15, 2096

November 27, 2114
23 24 25

December 7, 2132

December 19, 2150

December 29, 2168
26

January 9, 2187

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1901 and 2100

March 6, 1905
(Saros 138)

February 3, 1916
(Saros 139)

January 3, 1927
(Saros 140)

December 2, 1937
(Saros 141)

November 1, 1948
(Saros 142)

October 2, 1959
(Saros 143)

August 31, 1970
(Saros 144)

July 31, 1981
(Saros 145)

June 30, 1992
(Saros 146)

May 31, 2003
(Saros 147)

April 29, 2014
(Saros 148)

March 29, 2025
(Saros 149)

February 27, 2036
(Saros 150)

January 26, 2047
(Saros 151)

December 26, 2057
(Saros 152)

November 24, 2068
(Saros 153)

October 24, 2079
(Saros 154)

September 23, 2090
(Saros 155)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between April 8, 1902 and August 31, 1989
April 7–8 January 24–25 November 12 August 31–September 1 June 19–20
108 110 112 114 116

April 8, 1902

August 31, 1913

June 19, 1917
118 120 122 124 126

April 8, 1921

January 24, 1925

November 12, 1928

August 31, 1932

June 19, 1936
128 130 132 134 136

April 7, 1940

January 25, 1944

November 12, 1947

September 1, 1951

June 20, 1955
138 140 142 144 146

April 8, 1959

January 25, 1963

November 12, 1966

August 31, 1970

June 20, 1974
148 150 152 154

April 7, 1978

January 25, 1982

November 12, 1985

August 31, 1989

Notes

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.

References

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements
  • v
  • t
  • e
FeaturesLists of eclipses
By era
Saros series (list)
Visibility
Historical
21 August 2017 total solar eclipse
Total/hybrid eclipses
next total/hybrid
10 May 2013 annular eclipse
Annular eclipses
next annular
23 October 2014 partial eclipse
Partial eclipses
next partial
Other bodiesRelated
  • Astronomy portal
  • Solar System portal
  • Category
Wikimedia Commons has media related to Solar eclipse of 1970 August 31.
Stub icon

This solar eclipse–related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e